Problem 1.15

The current entering the positive terminal of a device is $i(t)=6 e^{-2 t} \mathrm{~mA}$ and the voltage across the device is $v(t)=10 d i / d t \mathrm{~V}$.
(a) Find the charge delivered to the device between $t=0$ and $t=2 \mathrm{~s}$.
(b) Calculate the power absorbed.
(c) Determine the energy absorbed in 3 s .
[TYPO: This should be millivolts (mV).]

Solution

Part (a)
Begin with the basic definition of current and integrate both sides with respect to time from 0 to 2.

$$
\begin{aligned}
\frac{d q}{d t} & =i(t) \\
\int_{0}^{2} \frac{d q}{d t} d t & =\int_{0}^{2} i(t) d t \\
q(2)-q(0) & =\int_{0}^{2} 6 e^{-2 t} d t \mathrm{~mA} \\
& =\left.\left(-3 e^{-2 t}\right)\right|_{0} ^{2} \mathrm{mC} \\
& =-3\left(e^{-4}-e^{0}\right) \mathrm{mC} \\
& \approx 2.95 \mathrm{mC}
\end{aligned}
$$

This is the charge delivered to the device between $t=0$ and $t=2 \mathrm{~s}$.

Part (b)

The power that the device absorbs is

$$
p(t)=v(t) i(t)=\left[10 \frac{d}{d t}\left(6 e^{-2 t}\right) \mathrm{mV}\right]\left(6 e^{-2 t} \mathrm{~mA}\right)=\left[10\left(-12 e^{-2 t}\right)\right]\left(6 e^{-2 t}\right) \mu \mathrm{W}=-720 e^{-4 t} \mu \mathrm{~W}
$$

Part (c)
Integrate the power with respect to time from $t=0$ to $t=3 \mathrm{~s}$ to obtain the energy absorbed during this interval.

$$
\begin{aligned}
W=\int_{0}^{3} p(t) d t=\int_{0}^{3}\left(-720 e^{-4 t}\right) d t \mu \mathrm{~W}=-720 \int_{0}^{3} e^{-4 t} d t \mu \mathrm{~W} & =\left.180 e^{-4 t}\right|_{0} ^{3} \mu \mathrm{~J} \\
& =180\left(e^{-12}-e^{0}\right) \mu \mathrm{J} \\
& \approx-180 \mu \mathrm{~J}
\end{aligned}
$$

